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The dynamical exponents of the coordinate and of the mean square displace- 
ment are explicitly calculated in the case of a directed random walk on a one- 
dimensional random lattice. Moreover, it is shown that, in the dynamical phase 
where the coordinate increases slower than t, the latter is not a self-averaging 
quantity. 
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1. I N T R O D U C T I O N  A N D  BASIC EQUATIONS 

We consider the one-dimensional random directed walk on a disordered 
lattice described by the following master equation: 

dP/7 - - = - W , , p , + W , , _ ~ p ~  ~ (1) 
dt 

where pn(t) denotes the probability to be at the site of label n at time t. The 
W's are nonnegative quantities chosen independently at random in a given 
probability distribution p(W). 

Equation (1) is the directed version of the master equation tradi- 
tionally used in models of transport in biased media with quenched disorder 
(see, for instance, ref. 1 for the symmetric case and refs. 2 and 3 for recent 
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reviews on asymmetric models), Note that it can also describe a random 
process in which the variable of interest can only increase, starting from a 
given initial value. Thus, for instance, the dynamics of the number of 
charged particles deposited at random on an electrode can be modeled by 
Eq. (1). (4~ Furthermore, the general both-way asymmetric walk is believed 
to be asymptotically similar to a directed walk on a renormalized 
lattice(5'6); in this respect, the study of the directed walk is interesting in 
that it can generate the basic features of the general problem in a simplified 
framework. In particular, it allows one to characterize the dynamical 
phases introduced in ref. 7 by, as shown below, explicitly calculating the 
appropriate exponents. Moreover, we are able to demonstrate that, when 
the coordinate increases slower than t, it still fluctuates in the final regime; 
otherwise stated, it is not a self-averaging quantity. 

The main goal is to qualify at best the dynamical regime at large 
times, that is, to find the asymptotic behavior of the quantities 

+ o c  

x( t )=  ~ npn(t ) (2) 
n = 0  

+c~o 

xZ(t)= ~ n~p,(t) (3) 
n = 0  

Clearly, Eq. (1) can be viewed as describing the motion of a particle 

on a one-dimensional lattice; then, x(t) and X2(/) are, respectively, the 
coordinate and the mean square displacement of this particle; the lattice 
spacing is taken as unity and n = 0 denotes the initial position. In all the 
following, an overbar means an expectation value (usually called "thermal 
average") computed with the p's, still a priori depending on the particular 
sampling of the W's. On the other hand, ( - - . )  stands for a disorder 
average taken through the use of p(W). 

The nature of p(W) basically determines the characteristics of the 
final dynamics. By an exact resummation of the series appearing in Eqs, (2) 
and (3), it has been shown (8~ that, when all the inverse moments 
M , = ( W - " )  are bounded, a standard regime exists with finite velocity 
V and diffusion coefficient D. Furthermore, it was proved there that both 
V and D are self-averaging quantities, that is, are indeed independent of the 
sample considered. 

Here we aim at analyzing the very different situation where, on the 
contrary, the probability is high to have a nearly broken link. This will be 
modeled by taking 

p ( W ) = C , W " - f c  ~ (W> 0 , / ~  >0)  (4) 
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C. is the normalization constant, # a strictly positive number, and Jc  a 
cutoff function basically specified by the fixed frequency Win. Note that the 
smaller is/~, the higher is the probability to find a quasi-broken link. One 
thus expects a slowing down of the motion when p is decreased toward 0 +. 

We shall here only compute disorder-averaged quantities, since, in 
that case, it seems impossible to generalize the successful resummation 
given in ref. 8. It will nevertheless be possible to show that for/~ < 1, x(t) 
still exhibits strong sample-to-sample fluctuations, even at large times. 

Equation (1) can be solved by a Laplace transformation. Denoting by 
P,,(z) the Laplace transform ofp.(t), we can rewrite Eq. (1) as 

zP,,(z)-5.,o= - W.P.(z) + W._ ~ P._ t(z) 

yielding 

(5) 

1 12i W.~_ 1 P~ + Wo' P'>~ P~ (6) m=lz+W,.  

Introducing the generating function ~(q~, z), 

+ z c  

~(~b, z ) =  ~ ei'+P.(z) (7) 
n = O  

we see that the disorder average of ~ is equal to 

R(z) 
( cp(O, z)  ) = 1 - e ir + ze iOR(z)  (8) 

where R(z) is the Stieltjes transform of p(W) defined as 

f0 ~ p (w) R(z) = dW (9) 
z + W  

Note that when n o </~ ~< no + 1, where no is a nonnegative integer, the 
first no inverse moments of p exist and appear as coefficients of the integer 
powers of z in the nonsingular part of the expansion of R(z) near z = 0. 

Calling Xl(Z) and Xz(Z) the Laplace transforms of x(t) and x2(t) and 
differentiating twice ~ at q~ = 0, we find for the disorder averages 

1 1 
- (10)  (Xl(Z)) z2R(z) z 

2 3 1 
(x2(z)) z3R2(z ) z2R(z) +-Z (1t) 



14 Aslangul et  al. 

The disorder-averaged mean square dispersion (AxZ(t)) is 

(AxZ(t)) = (x2(t) - x -~  2) (12) 

and can b e  obtained by a Laplace inversion of the quantity Z~z(Z ) defined 
as 

(J2(z)  ) = ( x 2 ( z ) -  (xl * xl)(z) ) (13) 

In the latter equation, F ,  G denotes the convolution 

(F*  G ) ( z ) = /  dZ'F(z')G(z-z') 
c 2i7z 

In order to get a closed expression for the average (x~ �9 x l ) ,  we note 
the functional relation valid for any given sampling of the lattice: 

Wo zxl(z; Wo, W1, W2,... ) - -  [1 +zx~(z; Wx, W2, W3,...)] (14) 
z+ Wo 

By applying this relation twice, using the fact that the W's are dummy 
variables when the disorder average is taken and that they are 
uncorrelated, we find 

[ z2R(z)-z';R(z')] 1/zR(z)+ 1/z'R(z')-I 
(x l (z)  x l ( z ' ) ) =  z-S--2' 1 

(15) 

The expression (15) is the central quantity to be analyzed since, com- 
bined with (x2(z)), it eventually leads to the mean square displacement. 
Before tackling this point, let us make precise the dynamical behavior of 
the simpler quantity (x(t)). 

2. PROBABIL ITY OF RETURN TO THE ORIGIN 
A N D  D Y N A M I C A L  EXPONENTS FOR ~x(t)) 

The dynamics at large times is determined by the properties of the 
function R(z) near z = 0 .  From its very definition, the latter can have 
singularities only on the half-line Re z < 0. More precisely, this function has 
a cut on the negative real axis, going from - Wmin to -- Wmax if p(W) does 
not identically vanish in the interval [-Wmin, Wmax]. For  instance, by tak- 
ingfc(X) as the unit step function 0(1 - x )  in Eq. (4), the cut extends from 
zero to - Wm. With the same sharp cutoff function at W-- Wm, R(z) can 
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be explicitly computed and, according to the value of #, has the following 
expansions: 

[ 7 
R(z)=~-~  sinTr/~ , ~ o n +  1 - [ t J '  

0 < / ~ < 1  (16) 

( -Z ) "  1+ Z ~, l_  
R ( z ) = ~  . 1 # - n  s i n T r / ~  . = . o n + l - # - I '  

1 ~<no<#~no+  1 (17) 

In the above, Z denotes z/Wm and n o is a positive integer. When # 
approaches such an integer, the appropriate limit has to be taken and the 
multivalued terms z ~ in the above produce logarithms. 

The disorder-averaged probability of return to the origin (Po(z)) is 
equal to R(z) [see Eq. (6)]. Using the fact that R(z) has no singularity 
except for its cut, the Laplace inversion produces the following expression: 

f0 ~~176 
(po(t) > = awe  W'p(W) (18) 

which in turn yields 

<Po(t)> = 7(I~, Wmt) (19) (w.,t)~ 

where 7 denotes the incomplete gamma function. The asymptotic behavior 
of (po(t)) is 

(po(t) > ~((~+t])  (20) 

po(t) provides a good example of the fact that the disorder average can 
modify the time dependence. Indeed, from Eq. (6), it is readily seen that, 
for a given sample, po(t) is exactly given at any time by exp ( -  Wot). Thus, 
averaging over disorder transforms this exponential into a powerlike long- 
time tail (at large times). In addition, it is worth noting that, in contrast 
to the exponents for the coordinate and the mean square dispersion derived 
below, the exponent for (po(t)> has the same functional dependence on/~ 
for any /~. The quantity (po(t)) has been computed for the general 
walk (2'3'9) and displays the same behavior as (po(t)) given by Eq. (20). 

822/'59,,'1-2-2 
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Using Eq. (10), we find that the disorder-averaged coordinate has the 
following asymptotic behaviors ( T =  W,~t): 

sin rc/~ 
( x ( t ) ) ~  T ~, 0 < / ~ < 1  (21) 

~ F ( ~  + 1) 

(x( t ) )  ~/~ - 1 T, 1 < # (22) 
# 

The results expressed by Eqs. (21) and (22) are in agreement with 
ref. 3, obtained independently by another method. As expected, (3'8) for 
# > 1, a finite velocity exists and is given by 

V = # - I  1 
= - -  ( 2 3 )  

# M_I  

On the contrary, for/~ < 1, the coordinate increases slower than t due 
to the greater weight of quasi broken links. It will be shown below that, in 
addition, the thermal average (2) is not in this case a self-averaging quan- 
tity, as a result of strong disorder. It may be understood as a consequence 
of the slowing down of the motion which prevents the particle from having 
a good feeling of the surrounding disorder. For p = 1, (x( t ) )  behaves like 
t/ln t. 

3. D Y N A M I C A L  E X P O N E N T S  FOR ( A x 2 ( t ) )  

The analysis of the mean square dispersion is, as usual, much more 
involved, since one has to obtain the small-z behavior of the convolution 
integral. After some algebra and using contour integration, the expression 
for (A2(z)) can be cast in the form 

fo ~ x(2x + z) p(x) I 2 1 (A 2( z ) )=  dx x + z  A ( x + z ) R ( x + z )  1 +Res  (24) 

where A denotes the quantity 

A = [x2R(xe -i~) - (x + z) 2 R(x + z)] [x2R(xe +i~) - (x + z) ~ R(x + z)] 

(25) 

In Eq. (24) the first term originates from.the cut of the multivalued 
function R(z), whereas Res notes the contribution from the residues due to 
the zeros of the denominator in Eq. (15). For clarity, we now analyze 
separately the different cases. 
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3.1. 0< lJ< l  

In this case, the dominant contribution to the expression (25) comes 
from the lace integral (in fact, in this case, no pole merges to the origin in 
the limit z--+ 0) and it turns out that 

1 (sinz~#~3i(#)(W~t)2u (26) 

where F denotes the Euler function and where I(#) is the integral 

fo ~ 2x + 1 I(#) = dx 
x p 

( x +  1) ~+1 x2~+2+2 cos n # x  ~+1(1+x)  u+l + (1 + x )  2u+2 

The main result is the time exponent characterizing the asymptotic 
regime and equal to 2#. This clearly indicates a slowing down of the 
motion at small #, the more since the coefficient in (26) goes to zero like 
# (see Fig. 1). Up to # = �89 the motion is subdiffusive: because of the many 
nearly broken links, the spreading of the packet is very slow, as well as its 

! 

/ 

' \  j 

\ 

p. 

Fig. 1. Variations as a function of p of the coefficient of ( W m t f f  (ul giving the dominant  
contribution to the mean square dispersion at large times [see Eqs. (26)-(28)]. 
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translational motion. On the contrary, for �89 < # < 1, such links are less 
frequently encountered and the motion speeds up a little; nevertheless, 
the particle may happen to be trapped and this produces a dragging effect 
displayed by a superdiffusive regime. 

3.2. 1 < l J < 2  

Again, the dominant contribution arises from the cut integral. A 
straightforward but tedious calculation leads to 

<AxZ(t))..~#( 3 ~ ) ( - ~ _ _ ~ ) f t l , / ~ + l ; 3 , - - 1 ) ( W , , t )  3 ~ (27) 

where F is the hypergeometric function. Again, the regime is superdiffusive, 
but the exponent now decreases from 2 to 1 when kt increases from 1 to 2, 
as a result of the less and less frequently encountered quasibroken links. 
The global coefficient can be numerically computed and is plotted in the 
middle part of Fig. 1. The divergence at # = 2 signals the onset of a non- 
analytical behavior. Actually, for ~t=2, the mean square dispersion 
increases as t In t. Using general statistical arguments, it is shown in ref. 3 
that, for a discrete time model, Levy's laws are involved in the problem; an 
estimation of the behavior of the spreading also leads to a time dependence 
dominated by a t 3-~ term. We find, moreover, that the subdominant 
contribution (arising from the residue) is governed by a t 2/u term. 

3.3. p > 2  

Now, the two first inverse moments exist and, as expected, the regime 
is a standard drift-diffusion one. One finds 

M - 2  ( # -  1) 3 
(ZlX2(t)) ~ 2 2--M--~_ 1 t = 2  2#2( # _ 2) Wmt (28) 

It is interesting to note that for # > 2, the dominant contribution to 
the rhs of Eq, (24) now comes from the pole, which behaves as Z 1/2 when 
Z ~ 1. The diffusion constant D is plotted in the right part of Fig. 1. Note 
that, when # becomes very large, D, as expressed in units Win, approaches 
its final value ( =  �89 from below. This simply means that the diffusion is 
slower in the disordered lattice as compared to the ordered one charac- 
terized by Win, not that weak disorder slows down diffusion. Were the 
ordered lattice used as reference characterized by a transfer rate eq_ual to 
1/M 1, one would find that D as expressed in this latter unit is greater for 
the disordered lattice than for the pure one. 

As a summary, the dominant exponent is plotted in Fig. 2 as a func- 
tion of #. The interplay between dragging and slowing down is displayed 
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by the n o n m o n o t o n i c  var ia t ion for/~ < 2. Roughly  speaking, for # < 1, the 
numerous  b roken  links slow down the mot ion  of the center of the packet.  
Fo r  # <  �89 they are even so numerous  as to hinder the spreading. For  
� 8 9  1, they become less efficient: the center speeds up while the 
spreading becomes superdiffusive. Fo r  1 < # < 2 ,  the spreading is still 
superdiffusive, while the number  of quas ibroken  links is not large enough 
to forbid ord inary  drift. Finally, for /x  > 2, these links are so rare that  the 
s tandard  drift-diffusion regime is restored. 

4. N O N - S E L F - A V E R A G I N G  P R O P E R T Y  OF x(t) FOR IJ < 1  

The sample- to-sample  f luctuations of x( t )  can be displayed by 
analyzing the relative dispersion linked to disorder, 6: 

6 = ( I X ( t ) ] 2 )  - [ ( x ( t ) ) ] 2  
[ <x(t)  > ] 2 (29) 

1 , 0 "  

0,0 I 

1 

2,0 l 

I t 1 

3 4 5 

Fig. 2. Variations as a function of the dynamical exponent c~(p) characterizing the dominant 
term in (Ax2(t)). For ,u=l, 2, the behavior is not purely powerlike: for #=1, 
(AxZ(t)) oc t2/ln 3 t; for # = 2, (Ax2(t)) oct In t, 
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The convolution integral yields the first term in the numerator, while 
the second one is given by Eq. (21). These lead to 

# F(1/2)F(I~) 1 (30) 
- -  22• 1 / ' ( ,U 4- 1/2) 

6 is a monotonically decreasing function for # between 0 and 1, assuming 
its maximum value (equal to unity) for #--*0+ (see Fig. 3). This latter 
result establishes the fact that, due to the large disorder, the particle coor- 
dinate still fluctuates from one sample to another, even in the final 
dynamics. The self-averaging property is recovered for/ ,  > 1. 

Clearly, our analysis cannot provide any information about the rather 
difficult problem of the behavior of the thermal average coordinate for a 
given sample. Indeed, in order to know the asymptotic time dependence (if 
it exists) for a definite configuration of the lattice, one should perform a 
similar study without taking any disorder average. Assuming for definite- 
ness that, in any case, x(t) for a given sample behaves like At ~ at large 
times, the following possibilities are open: 

Delta 1,2 - 

1,0 

0,8 

0,6 

0,4 

0,2 

Fig. 3. 

0 , 0 ~  
0,0 0,2 0,4 0,6 0,8 1,0 1,2 

g 

Variations as a function of # of the relative disorder fluctuation 6 [see Eq. (30)]. 
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(i) Only  the prefactor A fluctuates from one sample to the other, 
while c~ is a fixed (self-averaging) exponent. Even in such a case, c~ could be 
different from #; indeed, e could be equal to 1, for instance. Thus, x ( t )  

would display the same phenomenon  as po(t)  does: the time dependence, 
valid for any sample, is altered when an average over disorder is performed. 

(ii) Both the prefactor A and the exponent  c~ have sample-to-sample 
fluctuations. In this situation, no a priori  characterization of a sample 
chosen at r andom would be possible. 

The question of the underlying "microscopic" exponents yielding the 
dynamical  ones here calculated for averaged quantities thus remains to be 
settled. We are presently investigating this point. 
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